
Eur. Phys. J. B 3, 237–245 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Field-induced winding of chiral polymers
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Abstract. We propose a microscopic model of a chiral polymer chain with permanent transverse dipoles
interacting with an external electric field. Its behaviour has been investigated by computer simulation in
the limit of weak chirality. Large-scale (tertiary) helical winding induced along the field direction has been
found above a threshold field Ec, and the helix parameters have been calculated as functions of the field
strength. Below Ec there is no coherent helical structure of the chain conformation. We find a characteristic
scaling of the threshold and the winding radius a with the chain bending modulus ε, (Ec/kBT ) ∼ ε1/4 and
a ∼ (kBT/E)ε.

PACS. 61.20.Ja Computer simulation of liquid structure – 36.20.-r Macromolecules and polymer molecules
– 87.15.By Structure, bonding, conformation, configuration, and isomerism of biomolecules

1 Introduction

Notwithstanding the very large configuration space avail-
able to them, many biopolymers, such as polypeptides and
proteins, often adopt unique conformations [1]. Of partic-
ular interest amongst these are secondary helical struc-
tures, of which DNA is perhaps the best-known example.
Helical geometry is a consequence of the interplay of hy-
drogen bonds forming between different groups within the
molecule, and the sterical constraints which the same must
satisfy. Upon variation of some external parameter such
as temperature, solvent composition, or pH, a conforma-
tional transformation can be induced where an ordered,
rod-like helix transforms into a random coil; this is the so-
called helix-coil ‘transition’, which can be detected, e.g.,
by monitoring the optical rotation or the viscosity of the
sample [1]. The classical theories thereof date from the
1960s (see [2] for a review); more recent efforts, includ-
ing computer simulations, have concentrated on detailed
calculations for particular molecules (see, e.g., [3,4] and
references therein).

The natural question to ask at this stage is, what is the
minimal model of a helix? Unsurprisingly, most theoretical
work on helical polymers has been concerned with DNA.
In ‘supercoiled’ DNA, occurring in bacteria, circular (i.e.,
closed-loop) molecules arrange themselves into helices on
a length scale (typically 50 nm) which is much larger than
the double-helix repeat distance (3.4 nm) (for a review
of supercoiling see [5]). Such ‘tertiary structures’ can be
accounted for by treating DNA as a circular elastic rod
[6]. Also in the semi-microscopic models [7,8] supercoil-
ing is a consequence of twist rigidity, which presupposes a
non-trivial (effectively ribbon-shaped) backbone. By con-
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trast, in Marko and Siggia’s more microscopic model [9,
10], chirality is introduced by imposing conservation of the
linking number, i.e., the number of times the two threads
wind around each other. Elegant though this formulation
might be, it is none the less restricted to ring molecules.

Here we present what is, to our knowledge, the first
microscopic model of the tertiary structure of a chiral,
helix-forming polymer in an external (electric) field. This
paper is organised as follows: we start by writing down the
Hamiltonian of a semi-flexible, chiral polymer chain with
transverse dipoles along its backbone. We then proceed to
eliminate the transverse variables and obtain an effective
Hamiltonian which is a function of the unit tangent vector
only, but contains an effective chiral coupling to the ex-
ternal field. Simulation results are then presented for the
effect of the external field upon chain conformations. We
find a non-monotonic behaviour in the chain correlations,
indicating a coherent large-scale helical winding around
the direction of the field. This ordering occurs above a
threshold value of the field, below which no consistent di-
rection of the helix has been observed; the threshold elec-
tric field exhibits a clear scaling dependence on the chain
bending modulus. We conclude with a summary and a
discussion of future directions.

2 Theory

Several theoretical models and approaches have been de-
veloped to treat chiral, and especially helically twisted,
polymers; these originate mainly in the physical chemistry
of biopolymers. Here we shall use the basic and explic-
itly tractable formalism of a semi-flexible polymer chain
[11], in which chirality is introduced by means of a spe-
cific interaction between neighbouring segments. Strictly
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Fig. 1. (a) A chiral polymer chain with asymmetric cross-
section is characterised by its secondary helical structure, with
the transverse vector b̂(s) twisting about the tangent û; this is
the coupling of strength γt in equation (1). Untwisting the he-
lix leads to bending of the chain due to the steric dipole in its
cross-section (and so the corresponding constant γb should be
proportional to the degree of asymmetry of this cross-section).
Here the primes do not denote differentiation. (b) A continu-
ous, coarse-grained worm-like chain described by equation (2).
The effective chiral coupling induces local winding around E.

speaking, even a simple curve represented by a coordi-
nate r(s) (s is the arc length along the trajectory) can
have chiral character: one can add to the standard bend
elasticity 1

2ε
(
dû
ds

)2
, where û = dr/ds is the unit tangent

vector, a spontaneous torsion term ∼
(
û× dû

ds

)
· d

2û
ds2

. Note
that the apparent oddness of this coupling (or, in fact, any
other similar chiral term) with respect to the transforma-
tion û→ −û, is of no consequence because such a change
must be accompanied by a corresponding re-numbering of
the monomer sequence, s → −s, which makes the term
invariant. However, a more natural description of a chiral
polymer chain is via an additional variable – a transverse
unit vector b̂(s) ⊥ û(s) which can twist around, while
moving along the chain backbone. Indeed, it has been ar-
gued that molecular biaxiality is essential to produce chi-
rality in small-molecule fluids [12].

Figure 1a shows a spontaneously twisted chain mod-
elled by an elastic ‘belt’ of asymmetric (sterically dipo-

lar) cross-section. When two transverse vectors, b̂(s) and

b̂(s′), are forced to be parallel (for instance, by an exter-
nal field), the chain will bend, preserving the sense of its
natural chirality. These effects are expressed algebraically
by the last two chiral coupling terms in equation (1) be-
low. One may regard both the twist (γt) and the bend
(γb) chiral coupling terms as extensions of the sponta-

neous torsion
(
û× dû

ds

)
· d

2û
ds2

: in both cases the role of the
second-derivative field is taken by the corresponding per-
pendicular vector. Furthermore, one must take into ac-

count the torsion elasticity of such a chain, 1
2C
(
db̂
ds

)2

. In

some cases, e.g., for elastic beams [13], the torsion mod-
ulus C can be related to the bending modulus ε: for a
beam of rectangular cross-section with dimensions h� d,
we have ε = 1

12Y dh
3 and C = πY dh3, whence C ' 12πε,

where the Young modulus Y gives a characteristic energy
scale. Yet no such relationship seems a priori appropriate

to the minimal polymer chain defined in terms of its es-
sential geometry, the unit tangent û and the binormal b̂,
so we regard the two moduli as independent. The chain
Hamiltonian then takes the form:

βH =

∫ L

0

ds

{
1

2
ε(û′)2 +

1

2
C(b̂′)2 − µ(E · b̂)

+γt(û× b̂) · b̂′ + γb(û× b̂) · û′
}
, (1)

where the prime denotes the s-derivative, x′ ≡ dx/ds,
β = (kBT )−1, and we have also included the coupling
between the external electric field E and the transverse
molecular dipole moment m⊥ = mb̂. In making equation
(1) dimensionless, we have introduced the dipole moment
per unit length µ = m/(ξkBT ), with ξ the characteristic
size of a dipolar monomer unit. (It turns out that the
longitudinal dipole does not contribute to the effects we
are interested in and is, therefore, not included here. The
only consequence of the γt term in our calculations is an
irrelevant, and presumably small, renormalisation of the
optimal value ψ∗, see the Appendix).

There is a simple relation between the constants
that is determined by the spontaneous torsion of a chi-
ral polymer chain. Even a straight chain with û =
(0, 0, 1) has a helically twisted ground state with b̂ ∼
(sin 2πs/p, cos 2πs/p, 0), with p the natural pitch of the

torsional rotation of b̂ along and about the chain back-
bone û: p ' 2πC/γt. This helical rotation corresponds to
the so-called secondary structure of chiral polymers [1]. In
this sense we consider here a chain well above the helix-coil
transition, when no particular tertiary structure is sponta-
neously established. γb should be much smaller than γt be-
cause it involves, apart from the chain chirality, the steric
dipolar asymmetry of the polymer cross-section.

We now argue that the characteristic scales of vari-
ation of û and b̂ are very different. It seems reasonable
to assume that the transverse vector b̂ is a significantly
‘faster’ variable than û for a semi-flexible chain; many chi-
ral polymers, such as proteins and DNA, have a character-
istic pitch of spontaneous torsion of the order of nanome-
ters (secondary structure), whereas the persistence length
of their tertiary structure is much greater. Indeed, Moroz
and Nelson [14] have recently estimated C = 120 nm for
DNA, much larger than the bending modulus ε. Integrat-
ing out the transverse variables b(s) (see the Appendix for
details), one obtains the effective Hamiltonian, depending
only on the chain tangent vector:

βHeff = −Lφ+

∫ L

0

ds

[
1

2
ε̃ (u′)

2
+ φu2 − g̃(u′ × u) ·E

]
,

(2)

with renormalised chain bending modulus ε̃ = ε − 4
9Cγ

2
b

and a new chiral coupling term with a prefactor g̃ =
4
9Cγbµ. In equation (2) φ is a Lagrange multiplier that
results from implementing the constraint that û is a
unit vector. Recently Pitard et al. [15] have considered
transverse dipole moments on a freely-jointed chain with
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Fig. 2. Mean square of end-to-end distance as a function of the reduced field strength E , for ε̃ = 10 and averaged over
N = 100 chains of length L = 1000 (the line is drawn through the data points to guide the eye). The inset shows a more
detailed investigation (the average of N = 1000 chains to reduce errors) in the weak-field region. The chain size appears to be
a non-monotonic function of the field.

excluded volume and chirality. The dipolar interactions
were, however, treated within mean-field, and therefore
only provide an attractive background to drive the col-
lapse transitions, whereas chirality is only included in the
last stage of writing down the Landau theory.

The secondary helical structure and helix-coil transi-
tion are determined by local chiral interactions on the
nanometer scale, which do not involve an external field
and depend on the microscopic details of the chain. In the
present paper we concentrate on the effect of the field upon
chain conformation on a larger length scale – the tertiary
structure. It is noteworthy that the effective chiral term in
equation (2) has a very similar functional form to the local
torsion of a curve (see above). However, because it only
couples the chain tangent and normal vectors in the plane
perpendicular to E, there is no preference for upward or
downward motion. Consequently, we expect this coupling
to induce a helical winding along E, an externally defined
direction in space (see Fig. 1b), with a radius determined
by the balance against the elastic term, but with both
senses of a helix equally represented.

3 Simulation

We have carried out off-lattice simulations of a single semi-
flexible polymer chain in an electric field. As suggested by
equations (1) and (2), in this first study we restrict our-
selves to the phantom chain, neglecting the requirement
of self-avoidance. The coupling between chain and field
is as described in the preceding section. The semi-flexible
chain has been modelled as a random walk in 3d space:
the length of a step is taken as the unit of length and

steps can be taken in any of a continuum of directions
parametrised by the set of angles ω = (θ, φ), with proba-
bility (for 3 < i < L)

Pi(ω) = Z−1 exp (−βHi) , Z =

∫
dω exp (−βHi) (3)

βHi = −ε̃ûi−1 · ûi − E(uxi−1u
y
i − u

y
i−1u

x
i ), (4)

where the unit vector ûi = ri − ri−1 = (uxi , u
y
i , u

z
i ) =

(sin θ cosφ, sin θ sinφ, cos θ). The discrete dimensionless
Hamiltonian βHi depends on two parameters: ε̃, the effec-
tive bending modulus in units of monomer length, ξ = 1;
and E = 4

9Cγbm(E/ξkBT ), the dimensionless ratio of the
electric field E to the temperature, in the same units. We
take E to be along the z-axis, E ≡ (0, 0, E). The first
three steps in each random walk are unbiased (i.e., all
directions are equiprobable), which should be immaterial
if the trajectory is sufficiently long. The angular integra-
tions are performed by 24-point Gauss-Legendre quadra-
ture [16]. Sampling is done by generating N chains of
length L ≥ 1000 each.

We start by investigating the behaviour of a chiral
chain of fixed bending rigidity ε̃, as a function of the re-
duced field strength E ∝ βE; the dependence on ε̃ will
be addressed later in the paper. In Figure 2 we present
results for the mean squared end-to-end distance 〈R2〉 of
a chain of length L = 1000, as a function of the strength
of the effective field, E . Despite considerable statistical
uncertainty, non-monotonic behaviour seems to be in ev-
idence. Figure 3 shows snapshots of three 4000-segment
chains for ε̃ = 100 and increasing field strength E = 2, 7
and 20. There is contraction of the chain dimensions along
all three axes but it is more pronounced in the xy-plane,
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Fig. 3. Snapshots of a single L = 4000 chain for ε̃ = 100 and
three increasing values of reduced field E = 2, 7 and 20, from
right to left. The field is along the z-axis and the threshold
value for this chain is Ec ≈ 7.5. One can clearly see the marked
reduction of chain dimensions in the xy-plane and the overall
anisotropy of the dyration; the helical structure is more difficult
to see because it occurs on a much smaller length scale.

whence the apparent relative stretching along z. In addi-
tion, a large scale helical structure is clearly visible [17].
In order to quantify this, we start by noting that in a ran-
domly coiled chain the mean squared distance between
any two points increases linearly with their arc separation
∆s (henceforth denoted s for simplicity). In a helix, by
contrast, points separated by a single turn (or an integer
number of turns) will be closer together than those that
are slightly less, or slightly more than a full turn apart
(see Fig. 4). In a statistical ensemble, the coherence of
this effect will decrease as the number of turns increases,
and eventually one recovers the ordinary diffusion law of
the mean-square separation. Still, it should show up as
the initial non-monotonic behaviour of the mean squared
separation between any two points on the chain as a func-
tion of their separation s. There is a clear anisotropy in
the correlation along the chain: due to the coupling sym-
metry we expect these correlations in the direction along
E should not be significantly affected by the field, while
the chain conformation in the plane perpendicular to E
should reflect the induced winding. Thus motivated, we
introduce a tensor order parameter

τ2
αβ(s) = 〈(rαi+s − r

α
i )(rβi+s − r

β
i )〉{i}. (5)

where the inner average is over all points i (monomers) of
one chain (i = 1, 2, . . . , L), and the outer average is over
N different chains. Obviously the statistics will be much
worse for s ∼ L (points far apart) than for s ∼ 1 (points
close together), since the latter corresponds to averaging
many more pairs of points on a chain. However, as we shall
see below, we are mostly interested in the region of small
separations s < 100, so it suffices to take L & 1000.

Because the external field (and hence the expected he-
lix axis) is taken along z, it is convenient to write the

r

r

∆ r∆ r +-

i+s

i

Fig. 4. Schematic representation of a portion of a helical
molecule. ∆r(s) = ri+s − ri, which connects points separated
by exactly one turn, is clearly shorter than either of the ∆r±.
Hence the order parameter τ2 (basically an averaged squared
length of ∆r(s)) should exhibit minima.

Fig. 5. τ2
⊥ vs s for ε̃ = 100, E = 20. Each point is obtained by

averaging over 100 chains of length 4000. Although the stan-
dard deviations (not shown) are considerable, an oscillatory
structure is clearly discernible. The second and higher minima
tend to be diffused by increasing the number N of chains in
the sample, whereas the first minimum remains, as far as we
could ascertain, unaffected.

order parameter in terms of its principal values, τ2(s) =
τ2
⊥(s) + τ2

z (s), with

τ2
⊥(s) = 〈(xi+s − xi)2 + (yi+s − yi)2〉{i}, (6)

τ2
z (s) = 〈(zi+s − zi)2〉{i}. (7)

Recalling that the parametric representation of a helix is
x = a cos(χs), y = a sin(χs), z = bs, with a the radius, b
proportional to the pitch and χ a ‘winding number’, re-
spectively, it is not difficult to check that for a perfect
helical curve τ2

z (s) ∼ s2, whereas τ2
⊥(s) will oscillate with

a first minimum at s∗ ∼ 2π/χ. Figure 5 illustrates the
variation of τ2

⊥ with increasing arc separation s, calcu-
lated according to equation (6). The period (pitch) along
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Fig. 6. Location of first minimum s∗ (diamonds and
solid line), the helix radius a (circles and dotted line),
and the period along axis pz (squares and dashed
line), vs E for ε̃ = 100 (averaged over 100 chains of
length 4000). The error in s∗ is estimated as ±2 at
worst, and the lines are drawn to guide the eye. Be-
low E ∼ 7.5 no minimum of τ2

⊥ could be found. The
lower solid line is the alternative route to pz, equation
(9).

the axis of an ideal helix is

pz =
2πb

χ
=

2π

χ

√
1− a2χ2. (8)

The position of the first minimum, s∗, for given values of
ε̃ and E has been found by inspection of the curves τ2

⊥ vs
s. As the axes of the helical sections of our trajectories are
often slightly tilted relative to the z−axis, we approximate

pz ≈
√
τ2(s = s∗), (9)

as an alternative definition of pitch. Furthermore, the total
arc length travelled along the chain in one turn of the
helix is expressed via the Pythagoras construction, (s∗)2 ≈
(2πa)2+τ2

z (s = s∗), where the first term on the right hand
side is the (squared) circumference of the projection of
the turn onto the xy-plane, and the second the (squared)
displacement along z, whence

a ≈

√
(s∗)2 − τ2(s∗)

2π
· (10)

Neglecting the uncertainty in the determination of s∗ as
comparatively small, the errors are given by standard sta-
tistical formulae as:

∆a =
∆τ2

z (s∗)

4π
√
τ2
z (s∗)

, (11)

∆(pz) =
∆τ2(s∗)

2
√
τ2(s∗)

(12)

and are probably overestimated because, in fact, the dif-
ferent pairs of points along the same chain are not always
statistically independent.

In Figure 6 we plot the induced supercoiling param-
eters s∗, the winding radius a (from Eq. (10)) and the

pitch pz (from Eq. (9)), as functions of the effective field
strength E , for ε̃ = 100. Each point results from averaging
100 chains of length 4000; a few trial runs with L = 10000
showed no deviation in the position of the first minimum of
τ2
⊥(s). Most noteworthy is the fact that there exists a crit-

ical field Ec below which τ2(s) is monotonic; examination
of snapshots of chains below this threshold reveals that
they still exhibit a vestigial helical structure, but it does
not seem to be correlated over the length of the chain and
is, therefore, not characterised by a well-defined length
scale and order parameter. Above Ec, all three quantities,
s∗, a and pz, are decreasing functions of (E/kBT ), corre-
sponding to tightening of the helix. They appear to follow
very closely a linear scaling relationship, for instance, the
radius a ∼ ε/E , although the increasing length of compu-
tations prevented a more detailed investigation of the high
field regime for E > 100. As a check on the consistency of
our procedure, we calculated pz from equation (8), using
a from equation (10) and χ = 2π/s∗. This is shown as the
thick solid line in Figure 6; agreement with pz given by
equation (9) (dashed line) is quite satisfactory.

In all the above calculations the effective chain bending
modulus was taken to be ε̃ = 100. We have repeated the
same procedure for several different values to investigate
the dependence of the twisting effect on chain rigidity.
Two sets of winding parameters, for ε̃ = 50 and ε̃ = 20,
are plotted in Figure 7 (where the errors are not marked,
being similar to those in Fig. 6). As would be expected on
physical grounds, decreasing the rigidity enables chains to
bend on shorter length scales, following a linear scaling.

The one remarkable effect we find is the change in
the threshold field Ec - stronger fields are required to or-
der more rigid chains into helices. Plotting the thresh-
old Ec against ε̃ we find a clear power-law scaling, shown
in Figure 8: a least-squares fit yields Ec ∼ ε̃α with α =
0.253± 0.005, close to (and not incompatible with, bear-
ing in mind all sources of error) α = 1/4. In fact, a fit
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Fig. 7. Same as Figure 6, but for chains of different rigidity: (a) ε̃ = 50; (b) ε̃ = 20.
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Fig. 8. Reduced threshold field Ec vs. bending rigidity ε̃ (log-
log plot). All data points are from averages over 100 chains of
length L = 4000. The least-squares fit to a power law, Ec =
Aεα, yields α = 0.253±0.005 with correlation coefficient 0.997.
The solid line is the model scaling function Ec ' 2.4ε̃1/4.

with fixed exponent 1
4 (see Fig. 8) leads to the relation:

4

9
Cγbm

(
Ec

ξkBT

)
' 2.409

(
ε̃

ξ

)1/4

. (13)

Such a clear scaling behaviour requires a brief quali-
tative analysis. The winding around the direction of E is
caused by the balance between the chain bending elasticity
and the effective chiral coupling. By optimising the generic
helical trajectory (an assumed minimum of energy) {x =
a cos(2πs/s∗); y = a sin(2πs/s∗); z = bs}, one obtains
the characteristic arc length periodicity s∗ ≈ 2π(ε/E), as
observed in Figures 6 and 7. Since the sense of helix is
irrelevant for the chosen model, we may assume the sim-
plest case of a flat circular trajectory of radius a, the en-
ergy density then takes the form of an effective potential:
βV (a) ∼ 1

2ε(1/a
2) − E(1/a) per unit length of the chain,

leading to the optimal winding radius a∗ ∼ ε(kBT/E), as
in Figures 6 and 7. The local mean square fluctuation of
this radius is 〈|∆a|2〉 ∼ 1/

(
L∂2V/∂a2

)
a∗
∼ ε3/E4L. An

estimate for the transition point may be obtained by re-
lating this fluctuation to the natural chain length scale,
the persistence length ∼ ε. This leads to Ec ∼ (ε/L)1/4,
not unlike the result in Figure 8.

4 Conclusions

In this preliminary simulation study of a chiral polymer
chain coupled with an external field, we have neglected

the spontaneous torsion of the chain,
(
û× dû

ds

)
· d

2û
ds2

, and
concentrated instead on the large scale structure produced
by the coarse-grained effective chiral coupling between the
field and the transverse dipole moments of the monomers.
As a result, the sense of induced helical winding was not
retained in the resulting simulated conformations. How-
ever, the effect of the effective chiral coupling with the
external field has been pronounced and found to exhibit
a number of unexpected features, namely:

1. The overall chain size as measured by the squared end-
to-end distance, varies non-monotonically with electric
field strength.

2. Above a threshold field, at E > Ec, the chain conforma-
tion is a helix of well-defined pitch and radius, both of
which are monotonically decreasing inverse functions
of E .

3. Below the threshold the chain still winds around the
direction of the field, but the winding radius seems
uncorrelated over the length of the chain. Such be-
haviour is reminiscent of the helix-coil transition (in
zero field), separating regimes where the chain con-
sists of one long, or a number of short, disconnected,
helical sections, respectively.

4. Finally, the simulation produced, with a very high
accuracy, a simple scaling dependence of the wind-
ing parameters, a∗ and s∗ and of the threshold field
(Ec/kBT ) on the chain bending modulus ε.

The effect of lowering the chain rigidity is to make the
chain more ‘fractal’ and thus able to bend on shorter
length scales (cf. Figs. 3, 6 and 8). Ec is an increasing func-
tion of ε̃ characterised by an apparent ‘critical exponent’
α ' 1/4, but the helical structure appears to survive un-
scathed in quite flexible chains, where no qualitatively dif-
ferent behaviour from that obtained for more rigid chains,
ε̃ = 100, is observed.

We are not aware of experiments that attempted in-
ducing the helical winding by the application of an ex-
ternal electric field. However, it appears that the effect
described here is within the plausible range of parame-
ters and could be possible to observe. To illustrate this,
we suggest the following estimate. Assume we are given a
chiral polymer chain with transverse dipole moment on
each monomer unit. The typical size of monomers can
be around ξ ∼ 5 Å and a moderate dipole strength is
m ∼ 10−29 Cm. In a series of recent papers [8,14] the
elastic moduli of a typical chiral protein or DNA molecule
are given: bending constant ε ∼ 10 nm, twist constant
C ∼ 100 nm and the natural pitch of secondary helical
twisting p ∼ 3 nm. This makes the twist chiral coupling
constant γt ∼ 10−7. Let us assume that the bend chi-
ral coupling (which invloves an additional small factor,
the steric dipole of the chain cross-section) is an order of
magnitude smaller, γb ∼ 10−8. Now, substituting these
parameters into equation (13) we obtain the threshold

electric field required: Ec ∼ (ε̃/ξ)
1/4

(ξkBT/Cγbm) ∼
4× 105 V/m. This is not an exceptionally high field and,
one might hope, the electrically-induced tertiary winding
of chiral polymers will be experimentally observed.

We thank S. F. Edwards, M. Warner, Y. Mao, V. J. Ander-
son and T. A. Waigh for many stimulating discussions and
suggestions. Financial support from the EPSRC is gratefully
acknowledged.



244 The European Physical Journal B

Appendix: Integration of the transverse modes
of a chiral polymer chain with transverse
dipoles

This Appendix gives a more detailed treatment of the mi-
croscopic model of a polymer chain with chiral interactions
in an external electric field. The corresponding partition
function is expressed as a path integral over the tangent
vector û(s) and the transverse vector b̂(s):

Z =

∫
D[û]D[b̂]

∏
s

δ(û2 − 1)δ(b̂2 − 1)e−
∫
ds 1

2 ε(û
′)2

× e−
∫
ds [ 1

2C(b̂′)2−µ(E·b̂)+γt(û×b̂)·b̂′+γb(û×b̂)·û′],
(A.1)

where the prime denotes differentiation with respect to s,
ε is the bending modulus, and C is the torsion elasticity
of the chain. The chiral coupling terms involving γt and
γb are graphically represented in Figure 1b, and have been
discussed in Section 2. µ is proportional to the transverse
dipole moment of a monomer (in our model, the longi-
tudinal dipole does not contribute to the induced chain
twisting).

Although the Hamiltonian is only quadratic in the
fields û(s) and b̂(s) (treated separately), the unit length
constraint renders the problem of evaluating the partition
function highly non-linear. One possible approach is to ex-
ponentiate the δ-functions in equation (A.1) by introduc-
ing auxiliary fields. In the steepest-descent (or mean-field)
approximation (where the local constraints, û2 = 1 and

b̂2 = 1, are relaxed into the global ones, 〈û2〉 = 1 and

〈b̂2〉 = 1), the partition function takes the form

ZMF =

∫
dφdψD[u]D[b] ei(φ+ψ)Le−

∫
ds [ 1

2 ε(u
′)2+iφu2]

× e−
∫
ds [ 1

2C(b′)2−µ(E·b)+iψb2+γt(u×b)·b′+γb(u×b)·u′].
(A.2)

It is convenient to incorporate the imaginary unit i into
the definition of auxiliary fields φ and ψ. These fields
can be treated as constants within the present approxi-
mation, and play the role of Lagrange multipliers in the
effective free energy. Now that the unit-vector constraints
have been removed, the elements of the path integral are
ordinary 3-dimensional vectors u and b, varying between
−∞ and +∞, and therefore the integrals can be treated
as Gaussian.

The next simplifying assumption we require is that
the characteristic scales of variation of u and b be very
different. This has been justified in Section 2, and is nec-
essary in order to decouple the Fourier (Rouse) modes of
u and b in the cubic chiral terms multiplying γt and γb,
so that the fluctuations of b can be integrated as if on
the background of a ‘slowly-changing’ u. The procedure
is now straightforward, since we have only Gaussian inte-
grals in the ‘fast’ variable b in equation (A.2). However,
care should be taken when dealing with the vector product

chiral coupling term multiplying γt. Let us introduce a set
of discrete Rouse modes (for a finite chain of length L):

b(s) =
+∞∑

n=−∞

e2πin(s/L)b̃n;

b̃n =
1

L

∫
ds e−2πin(s/L)b(s). (A.3)

Here b̃n is, in general, a complex function, with real and
imaginary parts: b̃n ≡ b̃k = <[b̃k] + i=[b̃k]; =[b̃k] =

−=[b̃−k], where k = 2πn/L. This distinction matters to
the chiral coupling term in the Hamiltonian, the Fourier
transform of which is∫

ds (u× b) · b′ ⇒ 2L
∑
n≥0

k
{(

u×=[b̃k]
)
· <[b̃k]

}
,

(A.4)

where we have used the fact that b(s) is real. The path
integral with respect to the ‘fast’ variable b can now be
evaluated by integrating separately the real and imaginary
parts of b̃k:∫ ∏

n≥0

d3<[b̃k]d3=[b̃k] eβL[µE+γb(u×u′)]<[b̃0]

× exp

[
−L

∑
n≥0

{(
1

2
Ck2 + ψ

)(
<[b̃k]2 + =[b̃k]2

)

−2γtkεαβγuα=[b̃k]β<[b̃k]γ
}]
.

(A.5)

Gaussian integration yields the effective Hamiltonian for
the longitudinal variables, determined exclusively by the
k = 0 mode:

βHeff = −φL

+

∫
ds

{
1

2
ε(u′)2 + φu2 +

1

4ψ
[µE− γb(u× u′)]

2
}
.

(A.6)

The optimal value ψ∗ of the Lagrange multiplier is found
by maximising the partition function. We assume that the
chiral effects represent but a small correction to the be-
haviour of the chain, and can therefore be neglected when
estimating a first, saddle-point, approximation to ψ∗. Set-
ting µ = γb = γt = 0 in expression (A.5) and performing

the integrations over <[b̃k] and =[b̃k], we get∫ ∏
n≥0

d3<[b̃k]d3=[b̃k] e−L
∑
n≥0( 1

2Ck
2+ψ)(<[b̃k]2+=[b̃k]2)

' eψL−3
∑
n≥0 log( 1

2Ck
2+ψ)

≡ e−Φ(ψ),
(A.7)
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where Φ is the ψ-dependent part of βHeff . Converting the
sum over k into an integral over n, this becomes

Φ(ψ) = −ψL+
3L

2π

∫ +∞

0

dk log

(
1

2
Ck2 + ψ

)
, (A.8)

which upon minimisation yields ψ∗ ' 9
8C . Substituting ψ∗

into equation (A.6) and expanding the last term, we ob-
tain equation (2), with a renormalised bending modulus
ε̃ of the twisted semi-flexible chain. The most important
result is the effective chiral coupling of the chain tangent
vector û to the external field, −E · (u′ × u) in equation
(2). This favours bend in the plane perpendicular to E,
with direction determined by the sense of chirality (con-
stant γb).
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